|
|
|
The usual number of scalar operations (i.e., the total number of additions and multiplications) required to
perform
Matrix Multiplication is
| (1) |
| (2) |
| (3) | |||
| (4) |
| (5) |
Two
matrices can therefore be multiplied
| (6) |
| (7) |
| (8) |
| (9) | |||
| (10) | |||
| (11) | |||
| (12) | |||
| (13) | |||
| (14) | |||
| (15) |
| (16) | |||
| (17) | |||
| (18) | |||
| (19) |
Matrix inversion of a
matrix
to yield
can also be done in fewer operations
than expected using the formulas
| (20) | |||
| (21) | |||
| (22) | |||
| (23) | |||
| (24) | |||
| (25) | |||
| (26) | |||
| (27) | |||
| (28) | |||
| (29) | |||
| (30) |
See also Complex Multiplication, Karatsuba Multiplication
References
Coppersmith, D. and Winograd, S. ``Matrix Multiplication via Arithmetic Programming.'' J. Symb. Comput. 9, 251-280, 1990.
Pan, V. How to Multiply Matrices Faster. New York: Springer-Verlag, 1982.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Is Matrix Inversion an
Strassen, V. ``Gaussian Elimination is Not Optimal.'' Numerische Mathematik 13, 354-356, 1969.
Process?''
§2.11 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press, pp. 95-98, 1989.
|
|
|
© 1996-9 Eric W. Weisstein