|
|
|
One of the 26 finite Simple Groups. The most complicated is the Monster Group. A summary, as given by Conway et al. (1985), is given below.
| Symbol | Name | Order | ||
| Mathieu |
|
1 | 1 | |
| Mathieu |
|
2 | 2 | |
| Mathieu |
|
12 | 2 | |
| Mathieu |
|
1 | 1 | |
| Mathieu |
|
1 | 1 | |
| Janko |
|
2 | 2 | |
| Suz | Suzuki |
|
6 | 2 |
| HS | Higman-Sims |
|
2 | 2 |
| McL | McLaughlin |
|
3 | 2 |
| Conway |
|
1 | 1 | |
| Conway |
|
1 | 1 | |
| Conway |
|
2 | 1 | |
| He | Held |
|
1 | 2 |
| Fischer |
|
6 | 2 | |
| Fischer |
|
1 | 1 | |
|
|
Fischer |
|
3 | 2 |
| HN | Harada-Norton |
|
1 | 2 |
| Th | Thompson |
|
1 | 1 |
| Baby Monster |
|
2 | 1 | |
| Monster |
|
1 | 1 | |
| Janko |
|
1 | 1 | |
| O'N | O'Nan |
|
3 | 2 |
| Janko |
|
3 | 2 | |
| Ly | Lyons |
|
1 | 1 |
| Ru | Rudvalis |
|
2 | 1 |
| Janko |
|
1 | 1 |
See also Baby Monster Group, Conway Groups, Fischer Groups, Harada-Norton Group, Held Group, Higman-Sims Group, Janko Groups, Lyons Group, Mathieu Groups, McLaughlin Group, Monster Group, O'Nan Group, Rudvalis Group, Suzuki Group, Thompson Group
References
Aschbacher, M. Sporadic Groups. New York: Cambridge University Press, 1994.
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A.
Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups.
Oxford, England: Clarendon Press, p. viii, 1985.
Math. Intell. Cover of volume 2, 1980.
Wilson, R. A. ``ATLAS of Finite Group Representation.''
http://for.mat.bham.ac.uk/atlas/html/contents.html#spo.
|
|
|
© 1996-9 Eric W. Weisstein