|
|
|
A number
is called
-hyperperfect if
![\begin{eqnarray*}
n&=&1+k\sum_i d_i\\
&=&1+k[\sigma(n)-n-1)]=1+k\sigma(n)k-kn-k,
\end{eqnarray*}](h_2370.gif)
References
Guy, R. K. ``Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers.''
§B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag,
pp. 45-53, 1994.
Sloane, N. J. A. Sequences
A007592/M5113
and A007593/M5121
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.