|
|
|
The unique Group of Order 7. It is Abelian and
Cyclic. Examples include the Point Group
and the integers modulo 7
under addition. The elements
of the group satisfy
, where 1 is the Identity Element.
The Cycle Graph is shown above.
| 1 | |||||||
| 1 | 1 | ||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 |
The Conjugacy Classes are
,
,
,
,
,
, and
.