|
|
|
Let
denote an integral convex Polytope of Dimension
in a lattice
, and let
denote the number of Lattice Points in
dilated by a factor of the integer
,
| (1) |
| (2) |
| (3) |
| (4) |
|
|
|
|
|
|
|
|
(5) |
See also Dehn Invariant, Pick's Theorem
References
Ehrhart, E. ``Sur une problème de géométrie diophantine linéaire.'' J. Reine angew. Math.
227, 1-29, 1967.
MacDonald, I. G. ``The Volume of a Lattice Polyhedron.'' Proc. Camb. Phil. Soc. 59, 719-726, 1963.
McMullen, P. ``Valuations and Euler-Type Relations on Certain Classes of Convex Polytopes.'' Proc. London
Math. Soc. 35, 113-135, 1977.
Pommersheim, J. ``Toric Varieties, Lattices Points, and Dedekind Sums.'' Math. Ann. 295, 1-24, 1993.
Reeve, J. E. ``On the Volume of Lattice Polyhedra.'' Proc. London Math. Soc. 7, 378-395, 1957.
Reeve, J. E. ``A Further Note on the Volume of Lattice Polyhedra.'' Proc. London Math. Soc. 34,
57-62, 1959.
|
|
|
© 1996-9 Eric W. Weisstein