|
|
|
The 2-1 fifth-order Diophantine equation
| (1) |
| (2) |
No solutions to the 3-1 equation
| (3) |
Parametric solutions are known for the 3-3 (Guy 1994, pp. 140 and 142). Swinnerton-Dyer (1952) gave two parametric solutions
to the 3-3 equation but, forty years later, W. Gosper discovered that the second scheme has an unfixable bug. The smallest
primitive 3-3 solutions are
| (4) | |||
| (5) | |||
| (6) | |||
| (7) | |||
| (8) |
For 4 fifth Powers, we have the 4-1 equation
| (9) |
| (10) | |||
| (11) | |||
| (12) | |||
| (13) | |||
| (14) | |||
| (15) | |||
| (16) | |||
| (17) | |||
| (18) | |||
| (19) |
A two-parameter solution to the 4-3 equation was given by Xeroudakes and Moessner (1958). Gloden (1949) also gave a
parametric solution. The smallest solution is
| (20) |
| (21) |
| (22) |
Sastry (1934) found a 2-parameter solution for 5-1 equations
|
|
|
|
|
(23) |
| (24) | |||
| (25) | |||
| (26) | |||
| (27) | |||
| (28) | |||
| (29) | |||
| (30) | |||
| (31) | |||
| (32) | |||
| (33) | |||
| (34) | |||
| (35) |
The smallest primitive 5-2 solutions are
| (36) | |||
| (37) | |||
| (38) | |||
| (39) | |||
| (40) | |||
| (41) |
The 6-1 equation has solutions
| (42) | |||
| (43) | |||
| (44) | |||
| (45) | |||
| (46) | |||
| (47) | |||
| (48) | |||
| (49) |
The smallest 7-1 solution is
| (50) |
References
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 95, 1994.
Gloden, A. ``Über mehrgeradige Gleichungen.'' Arch. Math. 1, 482-483, 1949.
Guy, R. K. ``Sums of Like Powers. Euler's Conjecture.'' §D1 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.
Lander, L. J. and Parkin, T. R. ``A Counterexample to Euler's Sum of Powers Conjecture.'' Math. Comput.
21, 101-103, 1967.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput.
21, 446-459, 1967.
Martin, A. ``Methods of Finding
Martin, A. Smithsonian Misc. Coll. 33, 1888.
Martin, A. ``About Fifth-Power Numbers whose Sum is a Fifth Power.'' Math. Mag. 2, 201-208, 1896.
Moessner, A. ``Einige numerische Identitäten.'' Proc. Indian Acad. Sci. Sect. A 10, 296-306, 1939.
Moessner, A. ``Alcune richerche di teoria dei numeri e problemi diofantei.'' Bol. Soc. Mat. Mexicana
2, 36-39, 1948.
Rao, K. S. ``On Sums of Fifth Powers.'' J. London Math. Soc. 9, 170-171, 1934.
Sastry, S. ``On Sums of Powers.'' J. London Math. Soc. 9, 242-246, 1934.
Swinnerton-Dyer, H. P. F. ``A Solution of
Xeroudakes, G. and Moessner, A. ``On Equal Sums of Like Powers.'' Proc. Indian Acad. Sci. Sect. A 48, 245-255, 1958.
th-Power Numbers Whose Sum is an
th Power; With Examples.''
Bull. Philos. Soc. Washington 10, 107-110, 1887.
.'' Proc. Cambridge Phil. Soc. 48, 516-518, 1952.
|
|
|
© 1996-9 Eric W. Weisstein