|
|
|
The parameters
,
,
, and
which, like the three Euler Angles, provide
a way to uniquely characterize the orientation of a solid body. These parameters satisfy the identities
| (1) | |||
| (2) | |||
| (3) | |||
| (4) | |||
| (5) |
| (6) | |||
| (7) |
| (8) | |||
| (9) | |||
| (10) | |||
| (11) |
The transformation matrix is given in terms of the Cayley-Klein parameters by
![]() |
(12) |
(Goldstein 1960, p. 153).
The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted Q for its close relationship with
Quaternions)
| (13) |
| (14) | |||
| (15) |
| (16) |
| (17) |
| (18) |
See also Euler Angles, Euler Parameters, Pauli Matrices, Quaternion
References
Goldstein, H. ``The Cayley-Klein Parameters and Related Quantities.'' §4-5 in
Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 148-158, 1980.
|
|
|
© 1996-9 Eric W. Weisstein